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A sparse grid surrogate model (or metamodel) is proposed to reduce the time-consumption involved by precise electromagnetic
simulators. Though sparse grids have already been used in many other domains, such electromagnetic application appears to be
original. The method can treat a high number of independent parameters that are intractable for many other techniques due to the
“curse of dimensionality”. The capabilities are illustrated via an example drawn from electromagnetic nondestructive evaluation.
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I. INTRODUCTION

IN many applications of computational electromagnetics,

like inverse problems in nondestructive evaluation or design

optimisation, the numerical simulation of the phenomenon

has to be repeated many times with different combinations

of the input parameters, making the complete process very

time-consuming. To reduce the computational burden, the true

simulator can be replaced by a cheap-to-evaluate surrogate

model (or metamodel), consisting in an interpolant fitted to

some pre-calculated samples of the true simulation. The key

to provide an accurate interpolant is to choose the samples

that span the approximation space in a certain-sense optimal

manner. Just to name a few contributions, classical methods

(e.g., variants of Latin Hypercube Sampling) are discussed

in general in [1], whereas some recent results on adaptive

sampling to electromagnetic problems are found, e.g., in [2].

However, these sampling methods are typically limited to cases

where the number of input parameters does not exceed circa

6, due to the “curse-of-dimensionality”. This limitation can be

overcome by the sparse grid technique as proposed herein. Sim-

ilar approaches have recently been applied to macroeconomic

problems with success: models up to 24 input parameters are

resolved in [3].

II. SPARSE GRID INTERPOLATION AS SURROGATE MODEL

Let the vector p contain the N input parameters of the

numerical simulation, and let q be the vector (length M ) of the

simulation results (outputs). For instance, in a nondestructive

test, p describes the defect geometry and q consists in the

samples of the observable signal. The simulation is referred to

as an operator: q = F{p}.

Let all input parameters be scaled to the [0, 1] interval, i.e.,

the input vectors live in the N dimensional unit-hypercube

P ∈ [0, 1]N . The sample set (pi,qi), i = 1, 2, . . . , n, that

will be used to support the interpolant, can be generated

by several strategies. The classical full grid approach places

K equispaced samples along each coordinate of P to span

a grid of totally n = KN samples. A piecewise N -linear

interpolation can then be defined between the grid points.

On the contrary, the sparse grid technique operates with a
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Fig. 1. Illustration of a full (left) and a sparse (right) grid in N = 2
dimensions. Top: samples. Bottom: basis functions along one axis (Some are
highlighted for a better visualisation). The 2D basis functions are the tensor
product of 1D basis functions defined in each dimension. Both grids use 17
equispaced samples (and so basis functions) per dimension, however, in the
sparse grid, many of the nodes are suppressed. Sample numbers are 289 and
65, respectively.

hierarchical set of linear basis functions as interpolants, and

only a small portion of the nodes in a full grid is needed to

establish the interpolation [4]. In Fig. 1, illustrations of the

sample pattern are shown. For sufficiently smooth functions

(with bounded mixed derivatives), the loss of interpolation

accuracy is quite small compared to the gain in the reduction

of sample number when changing from full to sparse grids. A

detailed presentation will be given in the full paper.

The interpolation of F (having a vector output) can easily

be traced back to M scalar interpolation tasks with a small

increase of the computational cost.

III. THE TEST PROBLEM: MAGNETIC FLUX LEAKAGE

The test problem is drawn from the magnetic flux leakage

(MFL) nondestructive testing method, that is used to detect and

characterise surface degradations of ferromagnetic specimens.
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Fig. 2. Top: profile of the flaw and its 7 parameters. The four segments are
3rd order polynomials. a1 . . . a4 vary between [0.5 . . . 1.5]mm; d1 . . . d3 vary
between [0.2 . . . 1.5]mm, respectively. Bottom: Examples for groove profiles
with corresponding signals along the scan line. The dash-dotted line is the
interpolant based on a sparse grid database.

In our fictitious case (Fig. 2), a planar surface (y = 0) separates

the ferromagnetic half-space (µr = 100) and the air in the

flawless case. An x-directed, homogeneous magnetic field is

incident (e.g., by a permanent magnet yoke): H0 = êx(1A/m).
The surface is corrupted by grooves (long in the z direction

and characterised by the profile in the xy plane). The distortion

of the x-component of the magnetic field (Hx(x)) due to

the groove is recorded above the damaged zone at a height

of 0.5mm along a line of 10mm in the x direction, in 51
equidistant steps, resulting in an output vector q of length

M = 51. The profile is described by four segments of

cubic polynomials, having totally N = 7 parameters, i.e.,

p = [a1, a2, a3, a4, d1, d2, d3].
The variation of the magnetic field is numerically calculated

by introducing magnetic surface charges and by solving the

arising integral equation via the Method of Moments [5]. Ex-

amples of the groove profile and the corresponding (computed)

Hx(x) signals are given in Fig. 2.

IV. NUMERICAL RESULTS

The quality of interpolation is characterised by the discrep-

ancy between the true signal q and the interpolated signal q̃

as ε(p) = ‖q̃−q‖, with ‖·‖ being the Euclidean vector norm.

A random set of 100 test points p1, . . . ,p100 is chosen where

ε is evaluated. The maximum (εmax) and the root mean square

(εRMS) values will be given herein.

The sparse grid sampling and the interpolation is carried out

by using the spinterp Matlab Toolbox [6]. The interpolation

accuracy is compared to full grids with different levels of

refinement in Fig. 3. Let us notice that the sparse grid can

provide an accuracy in terms of εmax around εmax,best =
2.6mA/m using approximately 10 times less samples than
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Fig. 3. Interpolation error with respect to the sample number, using sparse
and full grid samplings.

the full grid. To give an insight to the relative error, let

us note that the largest and the smallest norms of output

signals occurring in the database are (‖q‖)max = 346mA/m

(εmax,best/(‖q‖)max = 0.75%) and (‖q‖)min = 38.5mA/m

(εmax,best/(‖q‖)min = 6.8%), respectively.

V. CONCLUSION, PERSPECTIVES

The sparse grid interpolation is found to be a powerful tool

for the interpolation of the input-output operator in a MFL-

testing case with 7 defect parameters. This surrogate model

is expected to be of great use in the fast solution of the cor-

responding inverse problem. In the full paper, more examples

–involving more defect parameters– will be given. The adaptive

generation of the sparse grid will also be addressed.
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